BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables
نویسندگان
چکیده
The `1-regularized Gaussian maximum likelihood estimator (MLE) has been shown to have strong statistical guarantees in recovering a sparse inverse covariance matrix even under high-dimensional settings. However, it requires solving a difficult non-smooth log-determinant program with number of parameters scaling quadratically with the number of Gaussian variables. State-of-the-art methods thus do not scale to problems with more than 20, 000 variables. In this paper, we develop an algorithm BIGQUIC, which can solve 1 million dimensional `1regularized Gaussian MLE problems (which would thus have 1000 billion parameters) using a single machine, with bounded memory. In order to do so, we carefully exploit the underlying structure of the problem. Our innovations include a novel block-coordinate descent method with the blocks chosen via a clustering scheme to minimize repeated computations; and allowing for inexact computation of specific components. In spite of these modifications, we are able to theoretically analyze our procedure and show that BIGQUIC can achieve super-linear or even quadratic convergence rates.
منابع مشابه
Newton-Like Methods for Sparse Inverse Covariance Estimation
We propose two classes of second-order optimization methods for solving the sparse inverse covariance estimation problem. The first approach, which we call the Newton-LASSO method, minimizes a piecewise quadratic model of the objective function at every iteration to generate a step. We employ the fast iterative shrinkage thresholding method (FISTA) to solve this subproblem. The second approach,...
متن کاملA Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملJPEN Estimation of Covariance and Inverse Covariance Matrix A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملQUIC: quadratic approximation for sparse inverse covariance estimation
The `1-regularized Gaussian maximum likelihood estimator (MLE) has been shown to have strong statistical guarantees in recovering a sparse inverse covariance matrix, or alternatively the underlying graph structure of a Gaussian Markov Random Field, from very limited samples. We propose a novel algorithm for solving the resulting optimization problem which is a regularized log-determinant progra...
متن کاملParsimonious modeling with Information Filtering Networks
We introduce a methodology to construct parsimonious probabilistic models. This method makes use of information filtering networks to produce a robust estimate of the global sparse inverse covariance from a simple sum of local inverse covariances computed on small subparts of the network. Being based on local and low-dimensional inversions, this method is computationally very efficient and stat...
متن کامل